
Implications of the Java. Language on Computer-Based Patient Records

Daniel Pollard, Ezra Kucharz MS, W. Edward Hammond Ph.D.
Division ofMedical Informatics
Duke University Medical Center

Durham, NC

The growth ofthe utilization ofthe World Wide Web
(WWW) as a medium for the delivery of computer-
based patient records (CBPR) has created a new
paradigm in which clinical information may be
delivered. Until recently the authoring tools and
environment for application development on the
WWW have been limited to Hyper Text Markup
Language (HTML) utilizing common., gateway
interface scripts. While, at times, this provides an
effective medium for the delivery of CBPR, it is a
less than optimal solution. The server-centric
dynamics and low levels of interactivity do not
provide for a robust application which is required in
a clinical environment. The emergence of Sun
Microsystems' Java language is a solution to the
problem. In this paper we examine the Java
language and its implications to the CBPR. A
quantitative and qualitative assessment was
performed. The Java environment is compared to
H7ML and Telnet CBPR environments. Qualitative
comparisons include level of interactivity, server
load, -client load, ease of use, and application
capabilities. Quantitative comparisons include data
transfer time delays. The Java language has
demonstratedpromisefor delivering CBPRs.

INTRODUCTION
The. growth of the World Wide Web (WWW) has
facilitated an emergence of prototypical computer-
based patient records (CBPR) on the Internet. The
WWW is a client-server mechanism which uses
Hyper Text Transfer Protocol (HTTP) to transfer
information. The interfaces, d se engines, and
architectures of each WWW based CBPR are
unique'. Most are programmed in Hyper Text
Markup Language (HTML) and utilize common
gateway interface (CGI) scripts to access medical
data stored in database servers. Problems with this
pardigm include: server-centric dynamics, low
levels of data and interface interactivity, minimal
interface representations and limited yes of active
client processes.

Server-centric dynamics are present when there is a
heavy reliance on the server to perform most

0195-4210/96/$5.00 0 1996 AMIA, Inc.

computing functions. Such dynamics are a
significant problem for two reasons. First, large
instittions with many clients tend to generate heavy
loads on the central processing units (CPU) of their
servers. Secondly, most computations of dynamic
data representations must also be performed on the
server, further increasing the load.

Interface limitations of HTML constrain the
interactivity of a HTML based CBPR to low levels.
HTML was designed to present static information
and images with hyperlinks as the form of
interactivity. The advanced interface tools of image
maps and forms are essentially fancy forms of
hyperlinks. Any other manipulation or modification
to the data representation must be sent to and
processed by the server. For these reasons, an
interactive HTML interface is very server intensive.

In terms of client CPU utilization, HTML fails as
well. The only active client processes which occur
that utilize HTML are those unmodifiable processes
running in the browser (e.g. Netscape). These
include helper applications and recently some client-
side image maps.

The limitations of HTML create an interesting
paradox. To this point HTML has been the only
method of creating interfaces and representing
information on the WWW. While these interfaces
and representations provide, at times, an effective
paradigm for CBPR, they do not provide the true
level of interactivity necessaiy for the utilization of
theWWW as a clinical tool.

After reviewing some of the WWW CBPR projects
in the literaturel 23.4, it became apparent that a new
medium of programming and representation was
necessaiy to accomplish the task of implementing a
WWW CBPR that would be used in a clinical
setting. A WWW based CBPR system must have a
real-time interactive interface, be platform
independent, utilize an internet-based programming
language, and utilize client-based processors. This
new paradigm of Internet communication is

733

characteristic of Sun Microsystems' Java
programming language and environment. The
purpose of this paper is to examine the Java
language for utilization in a WWW CBPR.

BACKGROUND
Java has its origins in an effort to create software for
consumer electronics. Initially, development was
done in the C++ programnming language. Along the
way, many piroblems were encountered thying to use
C++ for these small, reliable, portable, distributed,
real-time systems. C++ had problems in the area of
processor independence and was unable to provide
reliable and safe execution. In fact, designing a new
language became a better alternative; thus Java was
incarnated. Several object oriented programming
languages (SmallTalk, Objective C, Eiffel) and a
thread management system (Xerox Park's
Cedar/Mesa) influenced the design and architeture
of Java5. As the Java language matured, the
consumer electronics market became less attractive
for Sun. Eventually, Sun exited the consumer
electronics market, and Java became a technology
without a home.

The ability to develop secure, distributed, network-
based end-user applications in Java has made it a
perfect tool for the Internet. Java applications can be
securely delivered to and run on any hardware and
software platform6. Furthermore, Java applications
consume minimal system resources and can be
dynamically extended.

Java is Similar to C
Java can be considered a leaner and meaner cousin
of the ANSI C programming language. Some have
termed Java the C programming language of the
Internet. To better understand Java, it is important
to see how it differs from C7.

First of all, Java does not support several of the
major data types found in C. These are pointers,
structures and unions. Java passes all arrays and
objects by reference without an explicit pointer type.
This feature circumvents many programming and
security problems. First, pointers can not be created
which point to undefined locations in memory.
Secondly, many programning errors result from the
misuse of pointers. Finally, without pointers,
security is improved because access to locations in
memory can not be forged. Structures or unions are
also not supported. Java instead replaces their
functionality with the object oriented constructs of

classes and interfaces. Another significant
difference between Java and C is the removal of the
preprocessor, header files (.h files), define statements
(#define) and type definitions (tpedef). These
constructs make it quite difficult to read and
understand C code. Without these, Java code is
easier to understand and therefore easier to modify
and re-use. It should be noted that there are other
minor differences, but for the sake of space they are
not covered in this document5.

Java is able to Run Existing C Code
Java has the capability to call existing programs.
This is accomplished by creating a Java method
whose implementation is written in an external
programming language. Currently, the only external
programming language which can be linked to Java
methods is C.

Applications vs Applets
Two types of programs can be written in Java:
applications and applets. Java applications are stand
alone programs which can be executed by a Java
interpreter. HotJava, an Internet browser, is a prime
example of a stand alone Java application. Java
applets, as the name implies, are small Java
applications. They are designed to be executed in
the environment of a web browser. Specifically, they
are designed to be called by an <APPLET> tag in a
HTML document, downloaded from a Web server
across the Internet and run locally in conjunction
with a web page. The most popular Java enabled
web browser is the Netscape Navigator 2.0. The
navigator contains a Java interpreter and therefore
can run Java applets. Presently, the Java enabled
Netscape Navigator is available on many platforms
including Windows 95, Windows NT, Macintosh
PowerPC, HP-UX (Hewlett Packard UNIX), SGI
IRIX (Silicon Graphics UNIX), OSF/l, SunOS 4.1,
and Sun Solaris 2.3 and 2.4. Netscape anticipates
shipping Java support for Windows 3.1, Macintosh,
and AIX in the second quarter of 19968.

Current CBPRs Using Java
An extensive literature and WWW search for the
utilization of the Java language in on-line medical
applications revealed that little application
development has ocured to date. The Gamelan
website proved to have the most extensive list of
medical Java applets and applications9. At the time
of authoring this paper, seven applets were available.
Most were educational in nature and included topics
such as genetic mapping and The Visible Human

734

Project. However, one applet from Los Alamos
National Laboratory was a radiology interface for the
Telemed Virtual Patient Record System. The
Telemed Virtual Patient Record System is a project
with the purpose of creating a national imaging and
medical records system for radiologistsl'. This
prototype applet utilizes a frontal-plane x-ray view of
the chest region to navigate throgh cross sectional
x-rays of the same region. No other Java CBPR has
been located in the literature or WWW. This scarcity
can be attributed to the only recent release of the
Java Developers Kit and Java extensions to
Netscape's WWW browser. The pending release of
Java programming tools and environments such as
Symanitec's Cafe, Metroworks' CodeWarrior Java
Extension, Borland's C++ (5.0) Java Extension, and
Rogue Wave Software's JFactory will increase the
growth of Java applet development. These tools will
simplify and streamline Java programming.

METHODS
To evaluate a Java applet as a means of medical
information delivery, a set of medical infonnation
was defined and presented using three different
delivery methods: a live telnet connection, HTML
pages, and a Java applet (see Figures 1,2, and 3).

First, a set of medical information was defined.
Three screens of data were identified (demographics,
encounters and problems) in an existing electronic
medical record system (TMR)". Next, HTML web
pages and a Java applet were programmed to display
the exact same information.

The Java applet and the HTML pages were served
from a 60MHz Pentium running Windows NT 3.51
directly connected to the Duke University Medical
Center network. The TMR telnet server was a
VAXNMS machine also connected directly to the
Duke network. The client which accessed all three
resources was a 75 MHz Pentium running
Windows95 connected to the Internet via a dedicated
56Kbit connection. Netscape Navigator 2.0 (for
HTML and Java) and WinQVT/Net 3.9 (for Telnet)
were the software packages used.

First, the time of the initial download was measured.
For the telnet connection, this was the time taken to
connect to the host. For the HTWL implementation,
it was the time to load up the home page. For the
applet, it was the time to load and start the applet.
The reload feature of Netscape was used to load the
HTML and Java pages without client caching effects.

re .. eiWe t sc'ssIOIcr 4Uh "h' IJnCl'r
.11- ..l

Next, the time to view each piece of information in
the set was measured. For Telnet, this was the time
between choosing a menu choice and the display of
the information. For HTML, this was the time
between clicking on the hyperlink and the display of
the secondary page. For the applet, this was the time
between pressing an applet button and the display of
the information.

735

I

Figures 1, 2 and 3 show the screens of a Telnet
session, a HTML page and the Java applet
espectively. Figures 4 and 5 show the time
response for each of the three delivery methods.
Figure 6 qlitaivey compares the three.

Figure 4. Time Delays ofDifferent Data Delivery
Methods(in seconds)

Step Telnet HTML Java
A. InitialDAwnload 1.17 1.32 4.74
B. View Dmogaphics. <0.10 1.67 <0.10
C. View Encounters <0.10 1.58 <0.10
D. View Problems <0.10 1.26 <0.10

Figure£ Graph ofTotal Time Delay of the
Different Data DeliveryMethods

ethn

Low
High LOW

Low

LOW LOW High
gh High Low
Low Low High
Low Low High
Low High High
High High High
Low High_Hig

DISCUSSION
Figures 4 and 5 define the delays assocated with the
three data delivery methods. As expected, Telnet
shows a low initial delay and minimal subsequent

delays. It is a good interactive data delivery method.
Java, on the other hand, requires the largest up-front
delay (almost 5 seconds), but, like Telnet, it provides
future information with virtually no delays. HTML
however has a different pattern to its delays. Each
HTML retrieval has at least a 1.0 second delay, and
therefore as more steps are completed, the total delay
increases linearly. After retrieving the third HTML
page (after step C), the HTML user has experienced
a greater cumulative delay than a Java or Telnet
user.

These results suggest that dynamic information with
graphical content is best displayed using Java. If
graphical content is not required, Telnet is adequate.

If the data is graphical yet static, HTML works best.

The qualitative description in Figure 6 addresses
some additional issues. First, ease ofprogramming

evaluated the skill needed by a programmer to create
the CBPR on the WWW. HTML proved to be the
easiest to program of the three. It should be noted
that most meaningful HTML solutions incorporate
CGI scripts to interface with databases and
incorporate user input. The programming of such
CGI scripts is a non-trivial task. Both the Java and
the Telnet solutions are more complex programmning
tasks. The difficulties in programming Java pay a
worthwhile dividend in the level of interactivity and
application capabilities. The user interface and
capabilities of Java parallel the functionality of most
high level progranming languages (including
C/C++). The static graphic representations in
HTML and the text only displays in Telnet are
eclipsed by the robustness of Java.

In tenms of distributed processing, Java does well. It
utilizes both the client's and the server's CPUs.
Telnet and HTML both heavily rely on the server's
processor. Telnet is a continuous connection
between the client and server in which most of the
processing occurs on the server. The client acts

736

-- Telnet HTML . Javaj

.44
2

: 0

A B C
Step Com plted

I 4 , -,-- -- ,- - -

I

HiRh

strictly as a terminal. Further problems with Telnet
include the requirement for constant availability of
the server and the delays in service due to network
traffic. HTML uses an asynchronous communication
scheme in which the client contacts the server only
when additional information is needed. While this
reduces the load on the server compared with the
Telnet solution, the server remains a processing
bottleneck. Every time the client attempts to get
information from the server it must wait for a new
connection to be opened. Java utilizes a different
scheme; it downloads the entire applet at once and
then the applet becomes self contained on the client.
It should be noted that with the present version of
HTTP, a connection must be opened and closed for
each Java class downloaded. The next generation
HTTP (appropriately called HTTP-NG), should
remove this considerable bottleneck'2. The one-shot
loading of Java is advantageous because it reduces
the load on the server CPU and shifts the processing
to the client. The server is therefore able to operate
with a greater number clients. Once the applet is
loaded on the client, it can operate independent of
the server and network delays. The response times
are dependent only on the local client..

Network loads are lowest utilizing Java because of
the single communication between the client and
server. Telnet's continuous connection and HTML's
iterative communication have a larger load on the
networks where they are being used. Both HTML
and Java have a high level of user friendliness
because of their ease of use. Each can utilize a
graphical user interface (GUI) to create an intuitive
interface. Both incorporate the mouse into their
applications. The Telnet solution is strictly a text
based interface and therefore tends to be more
difficult to use. All three delivery methods are
platform independent.

In conclusion, we propose the fiurther research and
eventual utilization of Java as a development
environment for WWW CBPR. Its robust
implementation will enable its ability to be used as
an interactive tool in a clinical environment.

Acknowledgments
This work was supported in part by National Library

ofMedicine Training Grant LM07071-3. Additional
thanks to Ahmed El-Ramly for the use of his
computer.

References
1. Hinds A, Greenspun P, Kohane I S. WHAM!:

Forms Constructor for Medical Record Access via
the World Wide Web. In Gardner R, ed.: Proc of
the 19th Annual SCAMC; New Orleans, LA;
November, 1995:116-120.

2. Cimino J J, Socratous S A, Grewal R The
Infonnatics Superhighway: Prototyping on the
World Wide Web. In Gardner R, ed.: Proc of the
19th Annual SCAMC; New Orleans, LA;
November, 1995:111-115.

3. Socratous S A, Cimino J J, Clayton P D. Access
to the Clincal Encounter via the World Wide
Web (abstract). In Hripcsak G, ed.: Proc of the
1995 Spring Congress ofAMIA; Boston, MA;
June, 1995:85.

4. Cimino J J, Socratous S A, Clayton P D. Internet
as clinical information system: application
development utilizing the World Wide Web.
JAMIA, 1995:2(5):273-284

5. Gosling J, McGilton H. The JavaTM Language:
A White Paper, 1994, 1995.
(see http://java.sun.com/whitePaper/).

6. Presently the operating systems include UNIX,
Windows NT, Windows 95 and Macintosh
PowerPC.

7. Campione, M, Walrath K. The Java Language
Tutorial. (See http://java.sun.com/tutoria1/
noMoreC/ index.html).

8. Netscape Corporation's Web Site. (See
http://home.netscape.com/comprod/products/
Navigatortversion 2.0/java_applets/index.html).

9. Earthweb, LLC. Gamelan Web Site.
(See http://www.gamelan.com).

10.Daniel R TeleMed GUI Applet. Los Alamos
National Laboratory Web Site. (See http:ll
www.acl.lanl.gov/rdaniel/classesJDK/
PickTesT2.html).

11. Stead WW, Hammond WE. Computer-based
medical records: the centerpiece ofTMR. MD
Computing 1988;5(5):48-62.

12.World Wide Web Consortium Web Site. (See
http:lH www.w3.org/hypertext/WWW/Protocols/
HTTP-NG/ http-ng-arch.html).

737

